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A countable set of distinguished fundamental reaction mechanisms on a 
potential surface serves as the set of generators for the fundamental group of 
reaction mechanisms. The effects of a change in the upper limit for energy 
on such groups are described with the aid of a lower semilattice, introduced 
into the family of all fundamental groups of reaction mechanisms, supported 
by the given potential energy surface. The algebraic structure of all reaction 
paths is described with the aid of groupoids and various subgroupoids and 
semigroups derived from them. 
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1. Introduction 

The general topological properties of potential energy hypersurfaces have obvious 
importance in the quantum chemical description of chemical reactions. These 
topological properties can be exploited in the development of techniques aimed 
at the global analysis of all interconversion processes among all chemical species 
composed from a fixed set of N nuclei and k electrons. Whereas topological 
methods have immediate applications in studying individual reactions, one of 
the ultimate aims of such global techniques is the development of computer-based 
quantum chemical synthesis design. 

A global approach to the description of chemical properties and the interrelations 
between different molecules, in terms of a single functional, has been advocated 
in a series of studies on energy hypersurfaces (see e.g. Refs. [1,2, 3] and references 
therein). Intriguing new developments, e.g. in the theory of density functionals 
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[4] and in a new interpretation of the role of Smoluchowski's equation in chemical 
kinetic phenomena [5], appear to support such a global approach. 

In a previous study [6] (Part III in the series) some general relations have been 
established among all those reaction mechanisms which are confined to the 
chemically most important low energy regions of a potential surface. It has been 
shown that in any level set F-(A) of the 3N-6 dimensional reduced nuclear 
coafiguration space M (which space is a metric space with metric d), the complete 
set of all closed reaction mechanisms has an algebraic structure, the fundamental 
group of reaction mechanisms. Level set F-(A) is obtained by truncating the 
potential energy hypersurface at energy value A, which energy value can be 
chosen arbitrarily. The fundamental reaction mechanisms, below energy A, are 
defined as homotopy equivalence classes of closed reaction paths. Within each 
such homotopy class any two reaction paths are equivalent in the following sense: 
they can be continuously deformed into each other within level set F-(A), i.e. 
without reaching or exceeding energy value A. The fundamental group of reaction 
mechanisms is a topological invariant, hence it is isomorphic to any group of any 
level set F-(B) having the same topology. It has been shown that variations in 
energy value A on the same hypersurface, or comparisons between different 
excited state energy hypersurfaces over the same nuclear configuration space M, 
lead to isomorphism and homomorphism relations between the respective funda- 
mental groups of reaction mechanisms [6]. 

In the present study we shall consider explicit constructions for these groups and 
describe some further features of the above model. On the one hand, we shall 
study certain special relations by focussing on the generator sets of these groups, 
and on the other hand, we shall also generalize the model by analysing the 
algebraic structure of a set much larger than that of the fundamental group of 
reaction mechanisms: the complete set of all reaction paths. This algebraic structure 
is a groupoid, which contains, as a subgroup, the fundamental group of reaction 
mechanisms. 

Throughout the paper the notations of Part III will be used. An introduction 
into the topological concepts used in the analysis of potential energy hypersurfaces 
can be found in the bibliography cited in earlier papers in the sequence, a detailed 
introduction into the relevant properties of free groups and free generators can 
be found in Refs. [7, 8], whereas for an easy reference, the definition and some 
general properties of groupoids are listed in the Appendix. 

2. Generators for the fundamental group of reaction mechanisms 

In order to analyse the general properties of groups of reaction mechanisms, we 
shall describe them in terms of a suitable set of group generators. Knowing these 
generators (generator mechanisms), we shall have a convenient tool for the 
description of the internal structure of the fundamental groups of reaction 
mechanisms and their various subgroups. One may expect that these generators 
have special chemical significance of their own, since any fundamental reaction 
mechanism can be expressed as a product of some generator mechanisms. 
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First we shall consider the following problem: under what conditions is the 
fundamental group of reaction mechanisms a commutative (abelian) group? We 
shall organize the exploration of these groups around the problem of commutativ- 
ity, since this is a concept simple to visualize for reaction mechanisms. One may 
expect on the basis of the definition of fundamental reaction mechanisms as 
homotopy equivalence classes of closed reaction paths, and on the basis of the 
definition of the product P~P2 of two reaction paths P~ and P2 as the "continu- 
ation" of P~ by/ '2 (Part III), that these groups are not in general commutative. 
Evidently, it is not in general indifferent which reaction mechanism follows the 
other. In spite of this, we shall find in every group of fundamental reaction 
mechanisms various commutative subgroups. In the following we shall consider 
a rather general condition for commutativity, and later on after exploring some 
properties of generator mechanisms, the condition will be given in simpler terms. 

We recall that ft has been proven in Part III that for any arcwise connected level 
set F-(A) of the potential surface the fundamental group of reaction mechanisms, 
as an abstract group, does not depend on the choice of reference point Ko c F-(A), 
i.e. on the endpoint of equivalent reaction paths. In particular, it has been shown 
that if Rt is a reaction path in F-(A) with origin Ko and extremity Kt, then a 
VR~ mapping of Ko-based fundamental reaction mechanisms [P~] to Krbased 
reaction mechanisms [Qi] = [R?IpiR1], which mapping is defined as 

VR, ([P,]) = [R~'P~R,] = [Q,] (1) 

is an isomorphism from fundamental group HI(F-(A), Td/A, Ko) to 
HI(F-(A), Td/A, Kj). This is the very reason why one can refer to the fundamental 
group Hi of reaction mechanisms within F-(A), and why the reference to a base 
point can be omitted. (Note, however, that the actual topology is always assumed). 

In terms of mapping VR, the general condition for commutativity can be stated 
as follows: 

If in an arcwise connected level set F-(A) of potential energy hypersurface E(K) 

VR, = VR2 (2) 

for mappings V defined by any two reaction paths Rt and Rz, which paths have 
the same endpoints Ko and K~, then and only then the fundamental group II1 
of reaction mechanisms is a commutative group. 

This can be seen easily by choosing any two reaction paths P~ and Pj from 
arbitrary two homotopy classes (reaction mechanisms) [Pi] and [Pj], defined 
relative to Ko ~ F-(A), and taking, in addition to reaction path RI ~ F-(A), the 
following two paths: 

R2 = Pf '  P~R, m F-(A) (3) 

and 

R3 = PiRt ~ F-(A). (4) 
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Evidently, for the endpoints of these reaction paths 

R, (0 )  = R d 0 )  = R3(0) = Ko (5) 

R,(1) = R2(1) = R3(I) = K,. (6) 

Condition (2) as applied to Ri, R2 and R3, gives 

[Q,][Qj] = [RT l P, Rk][R-k' PjRk] = JR'#' PiPjRk], k = 1, 2, 3 (7) 

where properties (iv) and (v) of the product of reaction paths have been utilized 
(see Part III). Taking the actual R2 and R3 paths in a sequence of substitutions, 
one obtains 

[Q~][Qj] = [ R Ti P~PjR,] = [ R~' PiPjR2] = [RT' PT' PjP~PjP~' PiR,] 

= [RT'PT'PjP, P, RI] = [R31PjP, R3] = [RT1PjP, R,] = [Oj]EO,]. (8) 

Since Va, is an isomorphism between the two groups, one based on Ko the other 
on Kj, relation (8) is equivalent to 

[P,]EP3 = [P3[P,] (9) 

i.e. the fundamental group IIl of fundamental reaction mechanisms is commuta- 
tive. On the other hand, since [P;] and [Pj] can be chosen as any two equivalence 
classes, and reaction paths Pi and Pj as any two representatives, it follows that 
R 2 and R 3 c a n  be any two paths from F-(A) ,  fulfilling the endpoint conditions. 
Consequently, condition (2) is both a necessary and a sufficient condition for 
commutativity. (Note that in the topological literature a space with property 
analogous to (2) is often referred to as a 1-simple space [9].) 

With the aid of the following two dimensional example one can easily demonstrate 
some of the commutativity properties of the fundamental group of reaction 
mechanisms and its subgroups. (Two dimensional examples are useful since they 
are easily visualized and can be discussed in terms of simple geographical 
analogies. One should be cautious, however, since not all two dimensional results 
can be generalized for higher dimensions.) 

Take a two dimensional level set F-(A)  of a two dimensional model potential 
surface E ( K ) ,  which level set is analogous to a lake with m islands in it. If  
energy value A is taken as the height of the water level, then F- (A)  can be 
visualized as a bounded subset of the two dimensional plane with m "holes" in 
it. This level set is topologically equivalent to a two dimensional sphere 2S(m + 1) 
with m + 1 holes in it. For example, if m = 0, i.e. F- (A)  is a simply connected 
domain with no holes in it, then it is topologically equivalent to a sphere with 
one hole in it, the perimeter of which hole corresponding to the boundary of 
F-(A) .  (In Fig. 1 the m = 2 case is shown.) This topological equivalence means 
that there exists a homeomorphism f 

f :  F - (A)  --> 2S(m + 1) (10) 

that maps the level set onto the sphere with holes. 
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E(K) ,.~m~, 
~runcated a{ 

F-(A) 
m=2 

" h 3  

2S  (re§ 
m = 2  

Fig. 1. Energy surface E(K) truncated at energy value A, the corresponding level set F-(A) with 
m = 2 holes in it and a topologically equivalent sphere 2S(m + 1) with m + 1 = 3 holes on it. Minima 
rn~ and m b of E(K) and some equipotential contours are shown, as well as two homotopically 
equivalent loops, Pz and p~ from homotopy equivalence class [P2] on sphere 2S(m + 1) 

Al though most  o f  the fol lowing analysis can be carried out directly on level sets 
F-(A),  we shall use various spheres to obtain our  conclusions,  since topological  
results are readily applicable and the easiest to visualize on spheres. The topologi-  
cal equivalence o f  F-(A)  and 2S(m + 1) guarantees that their fundamenta l  groups,  
as abstract  groups,  are the same, since g roup  I I~ (F - (A) ,  Td/a) is a topological  
invariant. 

Let us denote  the holes on 2S(m+ 1) by 

h a ,  h 2 ,  �9 �9 �9 , hm, h,,+l. (11) 

For  convenience,  we shall take h,,+j as the hole with perimeter  cor responding  
to the "outs ide  b o u n d a r y "  o f  F-(A),  more precisely, to the bounda ry  of  the 
u n b o u n d e d  max i m um  connected  componen t  o f  the complement  M \ F - ( A )  of  
F-(A).  Consider  a sequence o f  loops 

PJ,P2,... ,P,,,,P,,,+I (12) 

where each loop Pi separates hole h~ f rom all other  holes hjj ~ i, and winds 
a round  hole hi precisely once,  with either (but fixed) orientation. Then, according 
to a general topological  result on 2S(m + 1) for  the h o m o t o p y  classes [Pi] represen- 
ted by these loops,  the fol lowing relation [9] holds:  

[.p|]~l[p2]~2 �9 . .  [pm]~ . . . . .  [1] t (13) 
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where 

~ i = + l  (14) 

and where [1]' denotes the homotopy class of all loops not ~eparating any hole 
from any other hole on the sphere. The product of these homotopy classes is 
defined analogously to the definition [Eq. (63), Part III] of the product of 
fundamental reaction mechanisms. 

Evidently, any equivalence class of loops on 2S(m+ 1), however complicated, 
can be expressed as some product of classes [pl]<, [p2]~; , . . . ,  [pro+l] ~;"+,, with 
repetitions and both +1 and -1  powers allowed. Hence, the set 

{[p,]} 7~ l (15) 

is a generator set for the fundamental group of 2S(m-}- 1). 

By topological equivalence, the homeomorphism f :  F - ( A )  -~ ZS(m + 1) generates 
an isomorphism f * : I I I (F - (A ) ,  Ta/A)~I-II(2S(m+ 1), T) between the funda- 
mental groups of F - ( A )  and the punctured sphere 2S(m + 1). Hence the inverse 
images [P~] of generators [Pi] are themselves generators for the fundamental group 
of reaction mechanisms on level set F-(A):  

[Pi] = f * - ' ( [ p , ] ) .  (16) 

Evidently, relation (13) is also "inherited", and 

[P,]~2[P21% �9 �9 �9 [Pm]~m[Pm+,] ~m+' = [1] (17) 

where the a~ numbers are precisely the same as before in (13), and fulfill the 
conditions 

a i = + l ,  (18) 

and [1] is the zero reaction mechanism in F-(A) .  

In fact the very relations (13) and (17) imply that in both sequences {[p~]}~'~ 
and Srpll.m+~ LL ~aJ~=l of generators, one equivalence class is redundant. From Eq. (17) 
any one of the [P~] reaction mechanisms can be expressed in terms of the others, 
e.g. 

[Pm+,] = [P,]~'[P2] ~ . . . .  [Pro] ~ (19) 

where 

~3i = -oeia.,+l = +1. (20) 

Hence, the reduced set 

{[P~]}7'=l (21) 

is also a generator set for the fundamental group II1 of reaction mechanisms. 
Since relation (13) is the only relation on the sphere 2S(m + 1) among generators 
[Pi], i=  1 , . . . ,  m +  1, it follows by topological equivalence that the m generator 

p " reaction mechanisms in set {[ ~]};=1 are already independent. Hence, the funda- 
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mental group I I I ( F - ( A ) ,  Td/A) of reaction mechanisms on level set F - ( A )  is a 
finitely generated free group with generator reaction mechanisms [Pz], [ P2], . . . , [ Pm] 
as free generators. 

This finite set of  generator  mechanisms represents the chemically most important 
fundamental  mechanisms on level set F-(A) ,  since any fundamental  reaction 
mechanism [P] ~ HI can be expressed in terms of them as some product: 

[P ]  = [P,J%[P,2] '% �9 �9 �9 [P,~]% (22) 

where a;~ = +1 and repetitions are allowed. I f  we do not insist on any further 
restriction, then the same fundamental  mechanism [P] can be expressed in many 
(infinitely many) different ways. However, since lq~ is a finitely generated free 
group, every reaction mechanism [P] can be expressed in one and only one way 
as a reduce.d product. A reduced product [7] is a product of  form (22), where 

[P;j] = [P,j+,] (23) 

implies 

a~j ~ -aij+~ (24) 

that is, where no neighbors in sequence (22) are inverses of  each other. Evidently, 
whenever in a product  expression for a fundamental  reaction mechanism such 
inverse pairs occur, they can always be replaced with mechanism [1], and also 
omitted from the product,  unless [P] = [1]. Hence, it is convenient to express all 
fundamental  reaction mechanisms within the F - ( A )  subset of  the nuclear con- 
figuration space M as a reduced product, expressed in a unique form in terms 
of the generator reaction mechanisms. 

The length of  a fundamental reaction mechanism [P], with respect to generator 
set {[Pi]}?=~ of H I ( F - ( A ) ,  T d / a )  , is the number  k in expression (22), if [P] is 
given as a reduced product. As an example,  in a level set F - ( A )  with m -> 4 the 
length of  fundamental  reaction mechanism 

[ P ]  = [P4]-'[P,]-I[P3][P3]-'[P,][P~][P~] (25) 

is 3 (and not 7), since the above mechanism, rewritten as the reduced product,  is 

[P ]  = [P4]-~[P,][P,]. (26) 

Now, in the possession of a set of  free generator mechanisms, we may return to 
the problem of commutativity. That group II~ on level set F- (A)  is non-abelian 
whenever m > 1, is evident, since [PI][P2] and [P2][PI] are two different reduced 
products in a free group, hence they are different, representing two different 
reaction mechanisms: 

[ P,][ P2] rs [ P2][ P,] (27) 

and IIj is non-abelian. 

On the other hand, with the exception of m = 0, when II,  = {[1]}, the trivial group, 
IIx always contains a special abelian group, the infinite cyclic group as a subgroup. 
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Indeed, one can easily show that the group G ~  H1, given as 

G = {[Pi]}v: 3' = any integer} (28) 

for any fixed i, 1 -< i -< m, is the infinite cyclic group. Here we identify [p~]O with 
[l]. 

Evidently, each reaction mechanism [P~]* ~ II1. Furthermore, each such reaction 
mechanism is a reduced product of length lYl, and 

[Pi]V = [P~] v' (29) 

if and only if 

y-= y'. (30) 

Hence group G c I I ~ ,  generated by one generator reaction mechanism is the 
infinite cyclic group. In the special case of m = 1, there is only one choice, i = 1, 
and then II~ = G. 

3. Energy dependence within the family of groups of reaction mechanisms 

The set of free generator mechanisms is also a useful tool for studying energy 
dependent variations in the structure of the fundamental group of reaction mechan- 
isms on F-(A). The following property of level sets has been already pointed 
out in Part III, using elementary properties of critical levels [10]: if the connectivity 
of level set F-(A) changes monotonically during an energy change A ~ B, then 
the group at the level set of lower connectivity is a subgroup of the group at the 
level set of higher connectivity. 

We shall show now that by considering all possible energy values A and the 
induced changes in a connected level set F-(A) of the potential energy surface, 
the family of the fundamental groups of reaction mechanisms obtained has an 
algebraic structure of its own. If each critical level C is non-degenerate within 
each connected level set component F(C), then these groups form a lower 
semilattice. 
We shall first consider the example shown in Fig. 2. On this model surface m, s 
and M stand for minimum, saddle point, and maximum, respectively, with the 
energy value of the critical point given in parentheses. Equipotential contours of 
whole numbers for energy are shown, with the energy value indicated for each 
contour. We shall consider connected level set components F-(A) for various A 
values, such as the level set F~-(1.0), containing minimum ml and no other critical 
point. Note that there is another connected level set component F3(1.0) of the 
same energy bound A = 1.0 on this potential surface, with minimum m3 E F3( 1,0) 
and these two sets are disjoint: 

F~(I.0) • F;(1.O) = 0 .  (31) 

Due to the strict inequality (<)  in the definition of the F-(A) level sets (Part 
III), there is no level set F-(1.0) that contains m2(1.0). 
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For any energy value A one may associate each generator reaction mechanism 
[Pi] of the actual Ff(A) level set with the highest maximum Mi of the original 
energy surface E(K), which maximum M~ is encircled by all closed paths of 
equivalence class [P~]. Hence, one may match the indices in sequences {M~} and 
{[P~]}. For example, equivalence class [Pal encircles both the higher maximum 
M4 and the lower maximum M5 within any level set F-(A) of energy bound 
2.1 <A<_4.5, but [P4] encircles only M4 if A >  4.5. 

In Table 1 two sequences of energy dependent fundamental groups of reaction 
mechanisms of the example are given. IIt(A, B] stands for the group obtained 
in a level set F-(A') of energy bound A' falling within the open-closed energy 
interval (A, B], A'~ (A, B]. Each group is specified in terms of generator mechan- 
isms [P~]. In the first (second) sequence the connected level set component F~(A) 
(F3(A)) that contains minimum m~(0.0) (minimum m3(0.0), respectively) is 
considered, as the energy A of the level set is increased from A --- 0.0 to A > 8.0. 

Evidently, a critical level A of a saddle point is required for any new generator 
mechanism to enter the group 1-It, and reaching the level of a maximum eliminates 
one generator. An evident, nevertheless important, special property of such groups 
is the fact that if during an energy increase any given generator mechanism is 
eliminated from the group, it never returns at higher energies. 

NOte that the level set F-(A)= ~,  the empty set for any A---0.0, in particular, 
at A = 0.0 no fundamental group of reaction mechanisms exists on this surface. 
In the (0.0, 1.5] open-closed energy interval 

II,(F~-(A), Td/A) = {[1]} (32) 

the trivial group, and as the energy is further increased, in the interval (1.5, 2.5] 
one obtains the infinite cyclic group generated by [Pt]. When the energy is further 
increased, more complicated but still fairly simple groups are obtained. 

Table 1. Energy-dependent a fundamental groups of reaction mechanisms, 11,(A, B], and their 
generator mechanisms [Pi] in the two sequences of level sets of the example of Fig. 2 

Sequence F,-(A) Sequence Ff(A) 

Group Generator reaction mechanisms b Group Generator reaction mechanisms b 

- -  no group for A <-0 - -  no group for A-< 0 
II,(0.0, 1.5] no generators, trivial group {[1]} 11,(0.0, 2.31 no generators, trivial group {[1]} 
n,(l.5, 2.5] [P,] u,(2.3, 2.5] [P4] 
[1,(2.5, 3] [P,], [P2] II,(2.5, 3.5] [P41, [P31 
[1,(3, 3.5] [n2] II,(3.5, 4] [P4], [P3], [P2] 
II,(3.5, 4] In2], [V3], [P4] 11,(4, 4.5] [P4], [P3] 
11,(4, 4.5] [P3], [P4] [1,(4.5, 6] [P4], [P3], [Psi 
II,(4.5, 6] [P3], [P,], [Psi 111 (6, 7] [n,], [e3] 
[I1(6 , 7] [P3], [e4] 11,(7, 8] [P4] 
111(7, 8] [P4] 111(8, oo) no generators, trivial group {[1]} 
111(8, co) no generators, trivial group {[1]} 

a Group 111(A, B] is invariant within open-closed energy interval (A, B] 
b Free generators, for further details se text 
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The two sequences of  connected level sets, one starting from ml(0.0) the other 
from m3(0.0), become identical above energy bound A = 3.5, 

F [ ( A ) = F 3 ( A )  if A >  3.5. (33) 

Consequently, the two sequences of fundamental groups of reaction mechanisms 
also become identical above this energy bound. 

In each sequence of groups one may consider the subgroup relation as an ordering 
principle, and turn the sequence into a partially ordered set (poset). In doing 
this, we consider the actual, concrete groups and their actual, concrete subgroups, 
as specified by their generator mechanisms, and a group will not be regarded 
necessarily a subgroup of  another, if it is merely isomorphic to a subgroup of the 
other. 

As shown in Fig. 3, in each sequence the groups of fundamental reaction 
mechanisms form a lower semilattice. In these diagrams on the base level (level 
0) one finds one group, the trivial group of reaction mechanism, {[1]}, that is a 
subgroup of any other group. On subsequent levels l of  the diagrams the corre- 
sponding groups have precisely l generator reaction mechanisms. Whereas the 
actual groups at the same level l of the diagram are different, if they differ in at 
least one generator mechanism, nevertheless, they are isomorphic within any 
fixed level I, and as abstract free groups, are identical. Since the ordering relation 
within the diagram is the subgroup relation, 

H,(A, A'] c Hi(B, B'] (34) 

starting from any group Ill(B, B'] along a descending line one finds a subgroup 
H~(A, A'] of  H~(B, B']. 

The binary lattice operations "meet"  and "join" [8] can be defined for these 
diagrams as having a largest common subgroup or a smallest common supergroup, 
respectively, where the latter term means a group containing both groups as 
subgroups. Evidently "meet"  of any two elements of the diagram can be formed 
since the trivial group {[1]} is a subgroup of  any two groups. However, as our 
example shows, the " join"  does not always exist for every pair of groups. For 
example, there is no " join"  for groups H1(3.5, 4] and II1(4.5, 6], that is, there is 
no fundamental group of  reaction mechanisms that contains both of  these groups 
as subgroups. Hence, the relevant algebraic structure of these diagrams is not in 
general a lattice, only a lower semilattice. Note, however, that in special cases 
both the "meet"  and " join"  may exist for all pairs of groups, and then a lattice 
is obtained. Furthermore, by artificially adding a formal group G, generated by 
k free generators, where k is the total number of  maxima which exist or can be 
encircled within level set F-(Amax), and Amax is the maximum energy value 
considered, this group G may serve as a maximum element, turning a lower 
semilattice into a lattice. In our case, G is formally generated by the set of all 
generator mechanisms {[Pi]} k=l occurring in the groups below and at energy value 
Amax 
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A necessary but not in general sufficient condition for moving "up"  (moving 
"down")  in the semilattice within any energy interval is the existence of a saddle 
point (maximum, respectively) within this energy interval. However, if the actual 
critical level at the saddle point (or maximum) is a non-degenerate critical level, 
i.e. one with a single critical point, then the same condition becomes a necessary 
and sufficient condition. 

It is instructive to trace the effects of energy changes in such a semilattice, and 
in particular, to relate energy changes to changes in the semilattice level /. The 
higher the level the "larger" the group of reaction mechanisms, with more free 
generators, implying a "reacher"  family of reaction mechanisms. At low energies, 
below and at Amln (in general at any lower bound of the potential surface) one 
does not have any group (no chemical structures, no reactions). Immediately 
above Amin, that value is necessarily that of an energy minimum, one obtains the 
trivial group {[1]}, representing one energy basin, one chemical structure. Initially, 
as the energy is further increased, usually one obtains more free generators, that 
corresponds to moving to higher levels l in the semilattice. Number I then is a 
simple measure of the complexity of the family of reaction mechanisms. 

The increase in the degree of complexity, l, with increasing energy, is not 
necessarily monotonic, even at low energies, although the general trend is an 
initial increase. Eventually, however, beyond an energy value that is A = 4.5 in 
our example, the dominant trend is a decrease in level l, i.e. in the level of 
complexity of the family of reaction mechanisms, as the energy is further 
increased. Finally, above an energy value that is A---8.0 in our example, the 
fundamental group of reaction mechanisms becomes again the trivial group {[1]}. 
Physically, at such high energy values all reaction mechanisms are topologically 
equivalent within the given subset of the potential energy surface. In such a case, 
unless some energy is subsequently lost by the chemical system, this subset of 
the surface behaves as a single, simple basin, with no detailed features being 
topologically significant. 

Comparison of the two lower semilattices in Fig. 3 suggests that such semilattices 
do have common sub-semilattices. In our example the groups above energy value 
A = 3.5 are identical in the two sequences of groups, implying that the correspond- 
ing parts of  the two semilattices are identical. 

We may generalize this observation. Let us denote by {F-(A)}A~ the family of  
all level sets of upper bounds A within the (A~, A2] open-closed energy interval. 
Take two continua of connected level sets {FT(A)}A3;~ and {Fz(A)}A3~, on 
the same potential surface, one starting at minimum m~, the other at minimum 
m2. Consider the corresponding two semilattices, S~ (m~) and $2(m2), respectively. 
Denote by A(s) the highest energy bound, for which F?(A(s)) and F~(A(s)) 
are still disjoint: 

A(s) = max {A: FT(A) ~ F~(A) = ~}. (35) 

This energy value, if exists below A . . . .  is necessarily that of a saddle point s, 

s c Fl-(Am~x). (36) 
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- -  A r e a  x Then, the semilattice S3(s), obtained for the continuum of level sets {F3 (A)}a(,) 
is a sub-semilattice of both St(m1) and S:(m2), in fact it is the largest common 
sub-semilattice, and 

S3(s) = S,( m,) c~ $2(m2). (37) 

The algebraic structure of the family of fundamental groups of reaction mechan- 
isms becomes the same above energy value A(s) ,  that is, it becomes independent 
of the initial choice, which chemical structure (which basin) of the F-(A,,ax) 
domain of the potential surface is provided gradually with more and more energy, 
or equivalently, of the choice, along which continuum of level sets does one 
initially follow the variations in the fundamental groups. The higher energy 
sub-semilattices "forget" the history of group-subgroup relations of the funda- 
mental groups of reaction mechanisms at lower energies. One should notice that 
for any two families {F~-(A)}A~'L~) and {F~-(A)}A~",~) where level set F-(amax) is 
simply connected, such common sub-semilattices must exist, since then 

II,(mmax) = {[1]} 

and 

(38) 

S(c) c S3(s) = S,(m~) n $2(m2) (39) 

where sub-semilattice S(c) is one defined for any critical point c c F-(Amax) such 
that 

E(c)  >- E(s) .  (40) 

4. The algebraic structure of the complete set of all reaction paths 

Consider the set P of all reaction paths within level set F - ( A )  of the potential 
energy hypersurface E ( K ) .  This set has much too many elements, and we shall 
seek to replace it with a smaller set, that still reflects the most important relations 
among reaction paths of P. For a general element p c P the origin p(0) and 
extremity p(1) may well be different, as opposed to the closed paths P c  P for 
which P(0) = P(1). In the remainder of this study we shall use lower case notation 
p for reaction paths whenever we wish to emphasize the possibility of p(0) r p (1). 

A general reaction path p c P, as defined in Part III, is a continuous mapping 
p : 1 -~ F - ( A )  of the unit interval I to level set F - ( A ) .  In particular, any constant 
path P for which P( I )  = K c F - ( A ) ,  i.e. a path with image a single point K in 
level set F- (A) ,  is also an element of P. 

For each path p c P we define two mappings, L* and R*, as 

L*:P-~ P 

R * : P ~ P  

L*(p) = q c P 

(41) 

(42) 

(43) 



Generator sets for the fundamental group of reaction mechanisms 105 

where 

q( I) = p(O) ~ F-(  A ) (44) 

and 

R*(p) = q'~ P (45) 

where 

q'(I) =p(1)  ~ F-(A).  (46) 

That is, mapping L* (mapping R*) assigns to each path p ~ P the constant path 
q at the origin p(0) (the constant path q' at the extremity p(1), respectively). One 
may refer to L*(p) and R*(p) as the left and right zero paths of reaction path 
p, respectively. 

Evidently, for a closed path P, P(0) = P(1) implies 

L*(P) = R*(P). (47) 

Furthermore, in terms of mappings L* and R* the condition pl(1)-p2(0)  for 
the existence of product reaction path P~P2 of p~, P2 ~ P (Eq. 34, Part III) can be 
given in equivalent form as 

R*(p,) = L*(p2). (48) 

We also recall that the homotopy equivalence classes [p] of elements of P are 

[p] = {p': p ' - p ,  p', p ~ P} (49) 

where - denotes homotopical equivalence relative to fixed endpoints. This 
definition implies that 

L*(p) = L*(p') (50) 

R*(p) = R*(p') (51) 

for any two p, p' ~ [p]. 

Let us denote the family of all such equivalence classes by H(F-(A) ,  Td/a) or 
in short, by II: 

II(F-(A), Td/A)  ~- {[Pa]" P~ C P}. (52) 

This set 17 is simpler than set P of all reaction paths. We may define two mappings 
L a n d R  on 11 as 

L : I I ~ I I  (53) 

R : I I ~ I /  (54) 

L([p~]) = [L*(p~)] c II (55) 

R ([p~]) = [R*(p~)] c 17. (56) 
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Due to relations (50) and (51) these mapping are well defined. Analogously to 
condition (48), the condition 

R([pl]) = L([p2]) (57) 

implies the existence of the product [Pi][P2] of equivalence classes [Pl] and [P2] 
of reaction paths, defined as 

[Pt][P2] = [P,P2] ~ I~. (58) 

This product, if exists (i.e. if (57) is fulfilled), is unique and does not depend on 
the choice of reaction paths pj,p:~P, representing equivalence classes [p~], 
[p~] ~ rI. 

The family II of all homotopy equivalence classes of the complete set P of all 
reaction paths within level Set F-(A), together with mappings L and R, fulfill 
the following conditions. 

�9 i (i) 

L.  L =  L =  R- L (59) 

L.  R = R = R .  R (60) 

where �9 denotes the composition of mappings. 

(ii) For any class [p]~ H the products L([p])[p] and [p]R([p]) exist and 

L([p])[p] = [/9] = [p]R([p]) ~ 17. (61) 

(iii) The products L([p])L([p]) and R([p])R([p]) exist for each [p]~ II and 

L([p])L([p]) = L([p]) c 17 (62) 

R([p])R([p]) = R([p]) ~ II (63) 

i.e. both L([p]) and R([p]) are idempotent. 
(iv) For any two [Pl], [P2] ~ II, fulfilling condition (57) 

L([p~][p2]) = L([Plp2]) = L([p~]) (64) 

R([p,][p2]) = R([ptp2]) = R([p2]) (65) 

hence, if in addition to (57), the condition 

L([p3]) = R([p2]) (66) 

is also valid for some [P3] ~ II, then the following product also exists: 

([Pl][P2])[P3] c 17 (67) 

[P,]([P2][P3]) ~ II. (68) 

(v) The homotopic associativity of product P~P2P3 of reaction paths, if the product 
exists (Part III, Eq. 56) implies that for the products (67) and (68) of homotopy 
classes of reaction paths associativity is also assured: 

(~PI][P2])~P3] -~- [.Pl]([P2]~P3]) (69) 

and one may simply write [Pl][PE][P3]. 
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(vi) One may also recall from Part III the existence of a unique inverse path p-i  
for every p e P, that implies the existence of a unique inverse 

D ] - '  = D - l ]  ~ n (70) 

for every [p]~ II, for which [p], [p]-i pair 

L([p]) = R ( [ p ] - ' )  (71) 

R([p]) = L([p]-l). (72) 

Properties (i)-(vi) of set H of homotopy classes of the complete set P of all 
reaction paths on F-(A), equipped with mappings L and R, imply that II has 
an algebraic structure: that of a groupoid, with product defined by (58). 

(Although in some texts on algebra the existence of product for some ordered 
pairs of elements, within a set G, is all what is required for a groupoid, in this 
study we require, by definition, associativity and the existence of left and right 
units, as well. For an alternative definition and for some general properties of 
groupoids, see the Appendix). 

5. Chemical significance, extensions, subgroupoids and subgroups of groupoid II 
of all reaction paths 

The intuitive chemical interpretation of product [Pl][P2] is the continuation of 
one set of equivalent reaction paths, [Pl], by another, [P2], followed by a relaxation 
of the constraint that all these paths pass through the point where they have been 
joined. It is the homotopical equivalence of certain reaction paths that enables 
one to replace the set P of all reaction paths with the much simpler set II. 
Nevertheless, this set II still contains the chemically most significant information 
about relations among all reaction paths on level set F-(A) of the potential 
energy hypersurface E(K). 

In the following we shall consider: 
(a) an extension of groupoid II to a semigroup I]' on level set F-(A), 
(b) subgroups of groupoid II, in particular, a subgroup obtained earlier by a 
different technique: the group II~ of all fundamental reaction mechanisms on 
F-(A). 

Groupoid II is an associative algebraic structure, but the closure property is not 
necessarily valid for arbitrary two equivalence classes [p~] and [P2] of reaction 
paths, since a product [P~][P2] within I1 exists only if condition (57) is satisfied. 
One may, however, formally assure closure, i.e. the existence of product for any 
two [fit], [P2] E II, by adding one element [t], to set II, which element [t] will be 
interpreted as the product of those equivalence classes [p~] and [P2] for which 
no product exists within the original groupoid H: 

[Pl][P2] = It] (73) 

whenever 

R([p~]) # L([p2]), [p,], [P2] ~ II. (74) 
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Furthermore, we define 

[p][t] = [t][p] : [t][t] : [t] (75) 

for every [p] ~ II. 

Evidently, the new algebraic structure, defined as 

n'(F-(a), T~/A) = I I (F-(A) ,  Ta/A) • {[t]} (76) 

and denoted in short by II', is a semigroup, since the product in II' already fulfills 
the closure property as well as the associative property for arbitrary elements of 
H r" 

One may attach an intriguing chemical interpretation to element [ t ] c l I ' .  It 
represents, in some abstract sense, the product of all those equivalence classes 
of paths, [Pt] and [P2], which paths are not continuations of each other in the 
given order. For each such pair [Pal and [P2] no reaction paths Plc  [Pal and P2 C [P2] 
can be combined into a single reaction path that would lead from the common 
origin 

K~ = p, (0), K~ ~ F-(A) (77) 

of all paths from class [Pal to the common extremity 

K2 =p2(1), K2~ F-(A) (78) 

of all paths from class [P2]. In spite of this 

[t] = [P,][P2] (79) 

holds, that is consistent with the assumption of the existence of a formal "element" 

t~,2 ~ [t] (80) 

of the new "equivalence class" [t], which tl,2 element does formally interconnect 
points K~ and K2. Evidently, for anypair of points K1, K2E F-(A), K1 # K2, one 
can find some equivalence classes [Pal and [P2], for which (79) holds. Con- 
sequently, this observation suggests an interpretation of [t] as the formal 
equivalence class of all those t~,2 interconversions of geometries within level set 
F-(A), which do not follow a continuous geometry change along reaction paths. 
Then, it is natural to associate [t] with an equivalence class of all formal tunnelir~g 
"paths" tl, 2 within level set F-(A). 

We may conclude that the extension of the groupoid II of all equivalence classes 
of all reaction paths in F-(A) into a semigroup H' is equivalent to the inclusion 
of an equivalence class [t] of all formal tunneling paths within level set F-(A). 
That is, a formal inclusion of tunneling changes the algebraic structure of the 
family of all chemical interconversion processes on the potential energy hypersur- 
face, from a groupoid to a semigroup. 

Let us consider now, instead of extensions, the internal structure: subgroupoids 
and subgroups of groupoid 17. In particular, it is simple to show that the 
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fundamental group of reaction mechanisms, Ill, as an abstract group, is a 
subgroup of groupoid II on F-(A) .  

For an arbitrary point Ko c F- (A)  consider the following subset II~ of groupoid 
II: 

H](Ko) = {[P]: P(0) = P(1) = Ko, VP c[P] ,  [P] e II}. (81) 

It follows, that 

t ( [n ] ) ,  R([P]) ~ H',(Ko) (82) 

[PI][P2] c II~ (Ko) (83) 

and 

[ n , ] - I  = [ P I - ' ]  E ~[ ](Ko) , V[P], [P1], [P2] 6 n tl(Ko) �9 (84) 

These conditions (81)-(84), however, are equivalent to those listed in the Appen- 
dix as the criteria of stability for a subset of a groupoid, hence H~(Ko) is stable 
within groupoid 17, for any choice Ko ~ F-(A) .  With mappings L and R restricted 
to subsets H[(Ko), these stable subsets are indeed subgroupoids of groupoid 17. 

Furthermore, definition (81) of II'l(Ko) implies that 

L([P]) = R([P]) = [Po] (85) 

for every [P] ~ H'l(Ko), where equivalence class [Po] contains the element constant 
path Po at point Ko 

Po ~ [no] (86) 

Po(I) = Ko. (87) 

Hence both L and R, when restricted to II~(Ko), are constant maps. Consequently, 
condition (A33) of the Appendix is fulfilled for II'l(Ko), and subgroupoid II~ is 
a group, a subgroup of groupoid H. In fact, a comparison of elements of 17~(K0) 
and of the fundamental group III(F-(A),  Td/A, Ko) at reference point Ko directly 
shows that II'~(Ko) is the fundamental group of reaction mechanisms, and the 
above derivation serves as an alternative proof that this set is indeed a group. 
As we have seen in Part III, for an arcwise connected level set F-(A)  the 
specification of reference point Ko can be omitted, hence, the fundamental group 
of reaction mechanisms IJ 1 is a subgroup of groupoid H: 

II~(F-(A), Td/A) C I I (F-(A) ,  Td/a). (88) 

This latter relation (88) is no surprise, as it is always valid for the fundamental 
group and the fundamental groupoid of a topological space [9]. 

6. Summary 

Using a suitable generator set of reaction mechanisms, actual constructions have 
been given for the fundamental groups of reaction mechanisms over potential 
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e n e r g y  sur faces .  W i t h i n  t he  f a m i l y  o f  al l  g r o u p s  o f  f u n d a m e n t a l  r e a c t i o n  m e c h a n -  

isms,  o b t a i n e d  by  v a r i a t i o n s  in the  u p p e r  b o u n d  fo r  ene rgy ,  s u b g r o u p  r e l a t ions  

l e a d  to a l o w e r  s e m i l a t t i c e  s t ruc ture .  T h e  a l g e b r a i c  s t ruc tu re  o f  al l  r e a c t i o n  p a t h s  

is a g r o u p o i d  II ,  t ha t  c a n  be  e x t e n d e d  in to  a s e m i g r o u p ,  by  f o r m a l l y  i n c l u d i n g  

t u n n e l i n g  on  the  p o t e n t i a l  e n e r g y  h y p e r s u r f a c e .  A n  a l t e rna t i ve  d e r i v a t i o n  o f  the  

g r o u p  p r o p e r t i e s  o f  t he  f u n d a m e n t a l  g r o u p  o f  r e a c t i o n  m e c h a n i s m s  is g iven ,  

w h i c h  g r o u p  is a s u b g r o u p  o f  g r o u p o i d  II .  

In  a s u b s e q u e n t  s tudy  we  shal l  e x p l o r e  t he  r e l a t i ons  b e t w e e n  the  a l g e b r a i c  

s t ruc tu re  o f  r e a c t i o n  m e c h a n i s m s  a n d  the  fuzzy  c a t c h m e n t  r e g i o n  t o p o l o g y  

i n d u c e d  by  the  Gi n e i g h b o r h o o d s  o f  c a t c h m e n t  reg ions ,  u s e d  in t he  d i t t e r en t i ab l e  

m a n i f o l d  m o d e l  o f  p o t e n t i a l  e n e r g y  h y p e r s u r f a c e s  [11]. 

Appendix 

A non-empty set G is called a groupoid if for certain (but not necessarily all) ordered pairs of elements 
a, b e G a unique product ab is defined, which ab product is also an element of G 

abe  G (A1) 

and if the following relations, (A.i), (A.ii) and (A.iii) are fulfilled: 

A.i. 

a(bc) = (ab)c (A2) 

if either side of the above equation can be formed within G for certain elements a, b, c ~ G; i.e., the 
product, when exists, is associative. 

A.ii. For any two elements a, b c G there exists at least one element x c G such that both 

ax, xb ~ G. (A3) 

A.iii. If exists x c G such that both products xa and xb exist in G, then the equation 

ay = b (A4) 

can he solved for y ~ G. 
Element x is a common left multiplier of a and b. 
Similarly, if c, d ~ G have a common right multiplier z ~ G, i.e. cz, dz c G, then the equation 

uc = d (A5) 

can be solved for u ~ G. 

We list few additional properties of groupoids, relevant to their applications to the complete set of 
reaction paths. 

A.iv. For each element a e G there exists a left unit )t(a) and fight unit p(a)  such that 

g(a) ,  p (a)  ~ G (A6) 

M a ) a  = a = ap(a).  (A7) 

A.v. If there exists a common left multiplier x, of a and b, 

xa, xb c G(a,  b, x ~ G) (A8) 

then 

A(a) =A(b). (A9) 
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Similarly, from 

ey, d y e  G(c,  d, y ~  G) (A10) 

p(c)  = p ( d )  (Al l )  

follows. 

Hence, both A(a)A(a) and p ( a ) p ( a )  are defined in G for every a E G, and they are idempotents: 

A (a)A (a) = A (a) (AI2) 

p ( a ) p ( a )  = p(a) .  (A13) 

A.vi. 'For  any left unit A(a) of a c G an inverse a -~ ~ G of a can be defined by 

aa - t  =,~ (a). (AI4) 

Since for any left unit A'(a) of a 

A'(a) = A (a)A'(a)  = (aa-1)A '(a) = a ( a - l A ' ( a ) )  (AI5) 

and 

a - l A ' ( a ) = a  i (A16) 

it follows that the left unit of a is unique: 

A(a) = A'(a). (AI7) 

Similarly, the right unit p(a)  is unique, 

p(a)  : p ' (a)  (A18) 

for any right units p(a)  and p'(a)  of a E G. 

A.vii. From the above it follows that for a ~ G 

a - l a = p ( a )  (A19) 

A ( a - ~ ) = p ( a )  (A20) 

p(a-~)= a(a). (A21) 

A.viii. The inverse a -~ of a ~ G is unique, and 

(a - l )  -1 = a. (A22) 

A.ix. If  

ay = b (A23) 

then 

y = a - l b  (A24) 

and similarly, if 

uc = d (A25) 

then 

u = de -1 (A26) 

for a, b , e , d , y ,  u E G  

A.x. 

( ab ) -1 = b- l  a -I .  (A27) 
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A.xi. A subset  H = G is said to be stable in G if and only if the following three conditions, (A), (B), 
and (C) are satisfied: 

(A) A ( H ) , p ( H ) c H  (A28) 

where 

A( H) = {x: x=  A(y), y e  H} (A29) 

p(H) = { z : z  =p(u),  u c H} (A30) 

(B) abe H (A31) 

for any two a, b E H such that p(a) = h(b). 

(C) If aE H then 

a -I ~ H. (A32) 

A stable subset H ~ G, equipped with mappings left and right units h and p restricted to H, is called 
a subgroupoid of  groupoid G. 

A.xii. If tr ~ G is a left or right unit  for some element a e G, then the set defined as 

g = { x :  x c  G , h ( x ) = p ( x ) = t r ~  G} (A33) 

is a group, a subgroup of groupoid G. Every subgroup of  G is also a subgroupoid of G. 

Partially ordered sets, lattices and semilattices 
Set A is a partially ordered set if for some pairs of  its elements a, b, c , . . .  e A a relation (partial 
ordering) p can be given with the following properties: 

apa (p is reflexive) (A34) 

apb and bpc~apc  (p is transitive) (A35) 

apb and b p a ~ a  = b (p is antisymmetric). (A36) 

Assume that in a partially ordered set A for two elements a, b e A there exists an element c ~ A that 
fulfills relations 

apc (A37) 

and 

bpc. (A38) 

If for any c' E A that fulfills both (A37) and (A38) the relation 

cpc' (A39) 

is also valid, then c is called the "join" (or supremum) of elements a and b, in notation 

a v b = c. (A40) 

Similarly, if for a, b, d c A 

dpa (A41) 

dpb (A42) 

and 

d'pd (A43) 

for any d ' c  A that fulfills both (A41) and (A42), then d is called the "meet"  (or infimum) of  elements 
a and b, in notation 

a ^ b = d. (A44) 
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If join (meet) exists for each pair of elements of set A, then A is an upper semilattice (lower semilattice, 
respectively). If both meet and join exist for each pair of elements of A then A is a lattice. 
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